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Abstract

We employ the term offset-continuation trajectory
stack, or briefly OCT stack, to describe the act of
computing efficiently the data stack along approximate
common-reflection-point (CRP) trajectories. The
method allows to construct a stacked common-
offset gather, that may have (or not) been collected
in the field. In other words, it is a data-driven
stacking technique that transforms 2D/2.5D prestack
multicoverage data into a common-offset (CO) section.
Similarly to the CMP and CRS stacks, this new
method does not rely on an a-priori velocity model but
provides velocity information itself. The original offset-
continuation-operation (OCO) method is a seismic
configuration transform designed to simulate a
seismic section as if obtained with a certain source-
receiver offset using the data measured with another
offset. Since an OCO depends on the velocity model
used in the process, it can be combined with stacking
techniques for a set of models, thus allowing for
the extraction of velocity information. The algorithm
is based on so-called OCO trajectories, which are
related to the concepts of image waves and velocity
rays. We theoretically derive the OCO trajectories
from the kinematic properties of OCO image waves
that describe the continuous transformation of the
common-offset reflection event from one offset to
another. Based on OCO trajectories, we then formulate
a horizon-based velocity-analysis method, where root
mean square (RMS) velocities and local event slopes
are determined by stacking along event horizons. A
numerical example demonstrates the feasibility of the
method.

Introduction

For data of very low signal-to-noise (S/N) ratio or
acquisitions with very low fold, conventional common-
midpoint (CMP) processing might not provide stacked
sections of sufficient quality. In such situations, alternative
processing sequences making use of a higher fold are
necessary to improve the data quality. Common-reflection-
surface stack (see, e.g., Höcht et al., 1999; Jäger et al.,
2001; Hertweck et al., 2007) and multifocusing (Gelchinsky
et al., 1999) are such generalized stacking techniques.
Here we propose an alternative technique that also makes
use of a higher data fold. We refer to this new process,
which is based on the offset-continuation operation (OCO),

as offset-continuation trajectory stack or briefly OCT
stack. It represents such an alternative path for the
processing of reflection-seismic data. Its key element is the
construction of common-offset stacked sections together
with coherency sections and sections of kinematic and
dynamic wavefield attributes.

By definition, the Offset-Continuation Operation (OCO) is
an operator that transforms common offset (CO) seismic
gathers from one constant offset to another (Deregowski
and Rocca, 1981). It is an important tool for imaging in
a complex medium. Possible applications of OCO include
velocity analysis, common-reflection point (CRP) stacking,
dip moveout (DMO), migration to zero offset (MZO),
interpolation of missing data, amplitude variation with offset
(AVO) studies, and geometrical-spreading correction (see,
e.g., Salvador and Savelli, 1982; Bolondi et al., 1982, 1984;
Fomel, 1994, 2003; Santos et al., 1997).

Since OCO is a configuration transform, its objective is
to simulate a seismic section using as input the data
measured with another configuration. As discussed by
Hubral et al. (1996a) and mathematically demonstrated
by Tygel et al. (1996), any configuration transform can
be thought of as being composed of a migration and
a subsequent demigration after changing a configuration
parameter.

Configurations transforms have already been used for
several purposes in seismic processing such as MZO
(Tygel et al., 1998; Bleistein et al., 1999), source
continuation operation (SCO) (Bagaini and Spagnolini,
1993, 1996), azimuth moveout (AMO) (Biondi et al.,
1998), DMO (Hale, 1984; Canning and Gardner, 1996;
Collins, 1997; Black et al., 1993), common-source (CS)-
DMO (Schleicher and Bagaini, 2004), data reconstruction
(Bagaini et al., 1994; Stolt, 2002; Chemingui and Biondi,
2002), and velocity analysis (Silva, 2005; Coimbra et al.,
2012).

The OCT stack makes use of so-called OCO trajectories
(Coimbra et al., 2012). Such a trajectory requires only
two parameters (local event slope and stacking velocity) to
describe the seismic reflection event in the multi-coverage
data. Using these parameters, the method stacks the data
along a predicted traveltime curve that approximates the
CRP event. Since the parameters, and thus the predicted
traveltime curve, are updated from the data at each offset,
the approximation is better than by conventional methods
that adjust the approximate traveltime expression at some
initial point. The purpose of this paper is to establish a
consistent processing chain that is based entirely on the
OCT stack, relying on identical assumptions at all steps.

Theoretical description

Coimbra et al. (2013) derived the theoretical basis for
the stack along OCO trajectories, based on the kinematic
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Figure 1: Sketch representing a traveltime surface and an
OCO trajectory starting at a point P0 on the traveltime curve
S0 in the initial common-offset section with half-offset h0
(front panel). (b) Location of an OCO trajectory (red line)
as compared to CMP traveltime curves (green line).

behaviour of the OCO transformation as described by the
OCO image-wave equation (Hubral et al., 1996b). Here we
briefly summarize the main theoretical ideas.

OCO trajectories

Recently, Coimbra et al. (2012) derived the OCO trajectory
tracing system has been recently derived by means of
applying the method of characteristics to the second-
order linear partial differential equation known as the OCO
image-wave equation (Hubral et al., 1996b). Formally,
we can think of the solution to this equation as being
approximated by an expression that is analogous to the one
used in ray theory, i.e., the leading term of a high-frequency
asymptotic (WKBJ-type) approximation for a reflected wave
recorded on a seismogram. Thus, the leading high-
frequency term describes the image-wave front for the
OCO image wave. In other words, the image-wave front
can be thought of as being represented by an OCO eikonal,
governed by an image-eikonal equation.

The solution of the OCO eikonal equation leads to ray-
like trajectories describing the position of a selected point
P0 on a seismic reflection event S0 in different common-
offset sections, the so-called OCO trajectories (Coimbra
et al., 2012, see also Figure 1a). In other words, an OCO
trajectory is the curve described by one event point under
variation of offset.

The algebraic procedure to construct the OCO trajectories
can be summarized as follows. As shown by Coimbra et al.
(2013), the traveltime surface in the offset-midpoint-time
space is a manifold SH(t,ξ ,H) = 0 (see again Figure 1a),

where H is the OCO eikonal. It must satisfy

H(ξh, th(ξh)) = h, (1)

in all common-offset sections. At h = h0, the manifold SH
coincides with the reflection event

S0 = SH(t(h0,ξh0),ξ (h0,ξh0),h0) = 0 . (2)

This leads to a family of characteristic curves t = t(h,ξh0),
ξ = ξ (h,ξh0), and H = H(h,ξh0), which depend on ξh0 and h
as parameters. Fixing h = h0 and varying ξh0 we obtain the
curve S0. On the other hand, fixing ξh0 and varying h, we
obtain the OCO trajectories. Actually, Santos et al. (1997)
have demonstrated that for one fixed ξh0 , all possible OCO
trajectories must satisfy

t2 = t(ξ ,h;ξh0 , th0 ,h0)
2 =

4h2

V 2 +
4h2(t2

h0
−4h2

0/V 2)

u2 , (3)

with

u =
√

(h+h0)2− (ξ −ξh0)
2 +
√

(h−h0)2− (ξ −ξh0)
2 .

Equation (3) is also known as the OCO Huygens-image
curve. It depends on the parameters ξ , h, ξh0 , th0 and
h0, but is independent of the actual position of the event
through P0.

The actual path of the OCO trajectory depends on the
event slope at P0. To describe this dependence, we
parameterize th0 = th0(ξh0) and consider ξh0 as a function
of ξ , h and h0. The envelope of all OCO Huygens image-
curves for all points on S0 describes the manifold SH at
half-offset h. It is constructed by taking the derivative of
t in equation (3) with respect to ξh0 . This results in the
relationship between the position ξ of the event at half-
offset h to its position ξh0 at h0 given by

ξ = ξ (h;ξh0 , th0 ,φh0 ,h0) = ξh0 +2ϒh0(h
2−h2

0)/Q , (4)

where Q =

√
ϒ2

h0
η2 +2t4

n0
+2
√

t8
n0
+ϒ2

h0
t4
n0

η2 +16ϒ4
h0

h2h2
0.

Here, tn0 =
√

t2
h0
−4h2

0/V 2 is the NMO corrected traveltime

at the initial half-offset h0, η = 2
√

h2 +h2
0, and ϒh0 = th0 φh0 ,

with φh0 denoting the dip of the reflection event S0 at P0.

Together, equations (3) and (4) constitute a parametric
form of the manifold SH . For a fixed ξh0 these equations
thus describe the OCO trajectory from P0 to any other
common-offset at h. In other words, equations (3) and (4)
represent the position of events that are reflected at the
same point in depth (if the medium was exactly described
by the OCO velocity V ), i.e., the OCO trajectory belongs to
a common-reflection point (CRP).

The OCO trajectory starting at some initial half-offset h0 =
hi 6= 0 and ending at the final half-offset h = 0 can be
alternatively described in the opposite direction as starting
as h0 = 0 and ending at hi. Thus, their midpoint dislocations
ξ0 − ξ must be the same. This leads to the relationship
between the event slopes in the CO(h0) and CO(h) sections
given by

φh = φh0

(
t2
n th0

/
t2
n0

t
)
, (5)

where tn =
√

t2−4h2/V 2 is the NMO corrected traveltime
at half-offset h.
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Figure 2: (a) CO section at h = 90m for synthetic test of
stacking along OCO trajectories, (b) Noisy reference CO
section (S/N=10).

Stack along OCO trajectories

The OCO trajectories can be used to approximate the
traveltime surface using the set of equations (3), (4),
and (5). Along the best-fitting trajectories, the data can
be stacked in a similar manner to conventional stacking
techniques. The best-fitting OCO trajectories are found
as follows: For a central point P0 with coordinates
(ξh0 , th0 ,h0), we trace trial OCO trajectories for each
possible combination of values for V and φh0 . The pair
that provides a coherence along the trial trajectory defines
the OCO trajectory for P0. To incorporate information about
the time dip along the trial trajectories, the coherence is
evaluated along the dip direction in a small window of
neighboring traces (7 traces in our implementation) around
the trajectory. At each half-offset, the dip is corrected from
its initial value by means of equation (5).

Denoting the parameter pair of local event dip φh0 and
average velocity V for the so-determined best-fitting OCO
trajectory as Ξ = (φh0 ,V ) to simplify the notation, the OCT
stack can be written as

M(P0;Ξ,h) =
h∫

h0

N

∑
n=−N

U(ξ (γ,ξn;Ξ), t(γ,ξn;Ξ),γ)dγ , (6)

where ξn = ξh0 +n∆ξ is the location of the nth neighboring
trace in the initial CO section, U = U(ξ , t,h) is reflection
seismic data in the midpoint-time-offset domain and N (3 in
our implementation) is number of traces to each side of the
principal trace that define the dip window.

The stacking procedure can be modified to improve the
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Figure 3: (a) Traveltime slope of the major coherence, (b)
OCO velocity panel. (c) Semblance along OCO trajectory
of the major coherence.

treatment of conflicting dips. For this purpose, we calculate
the coherence-weighted average over all stacking results
for different dips obtained with the same mean velocity V
that provided the best-fitting OCO trajectories. In symbols,

Ms(P0) = 〈M(P0,Ξ)〉V =

∫ φ2
φ1

CM(P0,Ξ)M(P0;Ξ,h)dφh0∫ φ2
φ1

CM(P0,Ξ)dφh0

, (7)

where CM is coherence measured in this case was used a
variation of the Semblance (Neidell and Taner, 1971).

Traveltime derivatives

There are a number of useful relationships between
different types of traveltime derivatives that can be found
from the set of equations (1)-(4). On the traveltime curve
in the common-offset section at h, we can differentiate
equation (1) with respect to ξ and h provide two important
relationships between the local event slopes in the CO
section, φh, and in the CMP section, ψξ , at the point (ξ ,h)
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OCO trajectory stack over all dips at h = 90 m
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Figure 4: (a) Initial OCT stacked section. (b) Final OCT
stacked section with improved treatment of conflicting dips.

where these sections intersect. The fact that the total
derivative of H with respect to ξ on the event is identically
zero, leads to (Coimbra et al., 2012)

φh =
∂ t
∂ξ

∣∣∣∣
h
=−∂H

∂ξ

(
∂H
∂ t

)−1
, (8)

which relates the traveltime slope φ in the CO section.
Correspondingly, from dH/dh = 1, we find that the
traveltime slope ψ in the CMP section as

ψξ =
∂ t
∂h

∣∣∣∣
ξ

=
dH/dh
∂H/∂ t

. (9)

Hubral et al. (1996b) found another useful equation for the
midpoint displacement in terms of the derivatives of H. In
our notation, their equation (A29) can be written as

ξh−ξ0 =
φhh2

t−hψξ

. (10)

By substituting equation (4) with h0 = 0 into formula (10), we
find after some tedious manipulations an expression for the
local event slope ψξ in the CMP section at ξ as a function
of the local event slope φh in the CO section at h. It reads

ψξ =
2ht(4−φ 2

h V 2)

V 2t2 +4h2 +
√

16h4−4h2t2V 2(φ 2
h V 2 +2)+ t4V 4

. (11)

It is instructive to observe that for a horizontal event, i.e., in
the case of φh = 0, equation (11) simplifies considerably to

ψξ =
4h

V 2t
. (12)

Using that ξ = (s + g)/2 and h = (g− s)/2, where s and
g are the source and receiver coordinates, we also find
the traveltime derivatives with respect to s and g, i.e., the
event slopes at the corresponding points in the respective
common-shot and common-receiver sections, as

ϕs =
∂ t
∂ s

=
1
2

(
∂ t
∂ξ
− ∂ t

∂h

)
=

φξ −ψh

2
, (13)

ϕg =
∂ t
∂g

=
1
2

(
∂ t
∂ξ

+
∂ t
∂h

)
=

φξ +ψh

2
. (14)

OCO velocity and RMS velocity

Let us now briefly discuss the relationship between the
OCO and RMS velocities. For the case of h0 = 0 in a
homogeneous medium, differentiation of equation (11) with
respect to h yields

∂ 2t
∂h2 =

∂ψξ

∂h
= 2t(4−φ

2
h V 2)/Λ+O(h) , (15)

with Λ = V 2t2 + 4h2 +
√

16h4−4h2t2V 2(φ 2
h V 2 +2)+ t4V 4.

The second traveltime derivative in the CMP section at
h = 0 is closely related to the NMO velocity vn, because
vn defines the hyperbolic traveltime approximation t2 = t2

0 +

4h2/v2
n. Thus, expression (15) taken at h = 0 and multiplied

by t0 yields

t0
∂ 2t
∂h2

∣∣∣∣
h=0
≡ 4

v2
n
=

4
V 2 −φ

2
0 . (16)

In other words, the OCO average velocity V is related to
the NMO velocity vn as

4
V 2 =

4
v2

n
+φ

2
0 . (17)

While this expression may be hard to interpret in the
general case, it is instructive to note that for a stack of
dipping layers with dip angle βM , vn = vrms/cosβM and
φ0 = 2sinβM/vrms, which yields

V = vrms . (18)

Note that this identity between the OCO velocity V and
the RMS velocity vrms is true at the very beginning of the
OCO trajectory at zero offset. For OCO trajectories traced
from another initial offset, V will deviate from the RMS
velocity. In other words, an OCT stack allows to extract
offset-depending average velocities.

Numerical results

To test the OCT stacking technique as described above,
we have applied it to a synthetic multi-coverage data set,
being a noise-contaminated subset of the Sigsbee2B data.
Figure 2a shows a common-offset section for h = 90 m of
the used part of the original Sigsbee2B data, and Figure 2b
shows the corresponding noisy section with random noise
with a S/N ratio of 10.

Figures 3-5 illustrate the procedure. For each point in
the reference CO section for h = 90 m (Figure 2a), we
applied the OCT stack to the noisy multi-coverage data.
The maximum semblance (Figure 3c) along all trial OCO
trajectory determines the parameter pair of traveltime slope
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Figure 5: Comparison between original (black, solid),
noisy (blue, short dashes), and stacked (red, long dashes)
traces. (a) ξh0 = 13.670 km, (b) ξh0 = 15.956 km.

(Figure 3a) and OCO velocity (Figure 3b) that define the
best-fitting OCO trajectory through the multi-coverage data.

The result of the stack using these values, equation 6,
is a noise-attenuated stacked CO section (Figure 4a)
corresponding to the reference section (which can, but
need not exist among the acquired data). We observe
a strong noise reduction in comparison to the noisy data
section in Figure 2b. All strong events are nicely recovered.
However, at points of conflicting dips, weaker events are
suppressed.

The coherence-weighted average of all stacking results
for all possible event slopes, equation 7, improves the
treatment of conflicting dips (see Figure 4b). Particularly
the diffraction events in the upper part of the section,
but also other events with conflicting dips, are strongly
improved. A drawback of the coherence weight is that
weaker events are further reduced.

Figure 5 shows a trace-to-trace comparison of the original
noise-free Sigsbee2B data, the corresponding noisy data,
and the OCT stacked section at two positions with and
without strong diffraction events. We see that the stacked
traces recover the original traces almost perfectly, with a
slight amplitude loss of some events.

Finally, an amplitude variation with offset (AVO) analysis
becomes possible along a very good approximation to the
true CRP trajectory. Figure 6 compares a conventional
CMP section with a CRP section obtained by selecting data
along OCO trajectories. Within both circles in Figure 6
we see that there exist a significant difference between
amplitudes of both data along certain events, indicating
that an AVO analysis in the CRP section would provide
improved results over those from the CMP section.
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Figure 6: (a) Sigsbee2B data near-offset section, (b)
Normal moveout CMP panel. (c) Normal moveout CRP
panel.

Discussion

OCO trajectories (Coimbra et al., 2012) can be used
for a multiparameter stacking procedure similar to its
relatives, the CMP and CRS stacks and multifocusing. By
stacking along trial trajectories, the OCO trajectory (OCT)
stack automatically determines stacking attributes based
on a coherence measure applied at every common-offset
sample of the data. The main advantages of the OCO
trajectories are twofold. Firstly, in comparison to a CMP
or zero-offset CRS stack, the procedure is not limited to a
zero-offset stacked section. This allows for the construction
of stacked common-offset sections to improve the signal-
to-noise ratio or even to interpolate the data. Secondly,
in comparison to an offset CRS stack, the OCO trajectory
stack needs less parameters to construct the stacked CO
sections. In the 2D/2.5D case as discussed here, only two
parameters (stacking velocity and local traveltime slope)
are needed.
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Conclusions

We have developed a new method for stacking data into
zero or common-offset sections. The method uses the
tracing of offset continuation (OCO) trajectories. These
trajectories describe the position of a selected point
on a seismic reflection event as a function of offset.
Neighbouring OCO trajectories form a stacking surface
along which the data can be summed up. In this way,
stacked common-offset sections can be constructed for
any arbitrary offset. An OCO trajectory is described by
only two parameters, being an average velocity that is
an approximation to RMS velocity, and the local event
slope in the final stacked section. This procedure is
advantageous over an offset CRS stack, which needs at
least 5 parameters to describe the stacking surface. As
a byproduct, the stacking along OCO trajectories provides
local event slopes at all offsets of interest, which can be of
further use in tomographic methods.
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